Principles of Adaptive Optics describes the foundations, principles, and applications of adaptive optics (AO) and its enabling technologies. This leading textbook addresses the fundamentals of AO at the core of astronomy, high-energy lasers, biomedical imaging, and optical communications.

Key Features:

  • Numerous examples to explain and support the underlying principles
  • Hundreds of new references to support the topics that are addressed
  • End-of-chapter questions and exercises
  • A complete system design example threaded through each chapter as new material is introduced



Autorentext

Robert K. Tyson is a professor emeritus of physics and optical science at the University of North Carolina at Charlotte (UNC Charlotte) and a fellow of the International Society for Optics and Photonics (SPIE).

Benjamin Frazier is a Senior Sensor Systems Engineer at the Johns Hopkins University Applied Physics Laboratory (JHU/APL).



Inhalt

Chapter 1 History and Background

1.1 Introduction

1.2 History

1.3 Physical Optics

1.3.1 Propagation with aberrations

1.3.2 Imaging with aberrations

1.3.3 Representing the wavefront

1.3.3.1 Power series representation

1.3.3.2 Zernike series

1.3.3.3 Zernike annular polynomials

1.3.3.4 Lowest aberration modes

1.3.4 Interference

1.4 Radiometry

1.4.1 Solid Angle

1.4.2 Radiative Transfer

1.5 Terms in Adaptive Optics

Spot Size

Beam Divergence

Beam Quality

Jitter

Power-in-the-Bucket

Brightness

Astronomical Brightness

Seeing

Fluence

Design Exercise: Telescope Specifications

1.6 Questions and Problems

References

Chapter 2 Sources of Aberrations

2.1 Atmospheric Turbulence

2.1.1 Refractivity

2.1.2 Statistical Representations

2.1.3 Refractive index structure constant

2.1.4 Turbulence effects

2.1.4.1 Fried's coherence length

2.1.4.2 Scintillation

2.1.4.3 Beam wander or tilt

2.1.4.4 Higher-order phase variation

2.1.4.5 Phase Tears and Branch Points

2.1.5 Turbulence MTF

2.1.6 Multiple layers of turbulence

2.2 Marine Environments

2.2.1 The Marine Layer

2.2.2 Underwater Effects

2.3 Thermal Blooming

2.3.1 Blooming strength and critical power

2.3.2 Turbulence, jitter, and thermal blooming

2.4 Aero-Optics

2.5 Non-atmospheric Sources

2.5.1 Optical misalignments and jitter

2.5.2 Platform Motion

2.5.3 Large optics: segmenting and phasing

2.5.4 Thermally induced distortions of optics

2.5.5 Gravity Sag

2.5.6. Manufacturing and Microerrors

2.5.7 Other sources of aberrations

2.5.8 Aberrations in laser resonators and lasing media

2.5.9 Optical Properties of the Vitreous and Aqueous Humors of the Eye

Design Exercise: Uncompensated Telescope Performance

2.6 Questions and Problems

References

Chapter 3 Adaptive Optics Compensation

3.1 Phase Conjugation

3.2 Limitations of Phase Conjugation

3.2.1 Turbulence tilt/jitter error

3.2.2 Turbulence higher order spatial error

3.2.2.1 Modal analysis

3.2.2.2 Zonal analysis - Corrector fitting error

3.2.3 Turbulence temporal error

3.2.4 Sensor noise limitations

3.2.5 Thermal blooming compensation

3.2.6 Anisoplanatism

3.2.7 Optical Noise - Speckle

3.2.8 Optical Noise - Scattering and Stray Light

3.3 Artificial Guide Stars

3.3.1 Rayleigh guide stars

3.3.2 Sodium guide stars

3.3.3 Lasers for guide stars

3.4 Combining the Limitations

3.5 Linear Analysis

3.5.1 Random wavefronts

3.5.2 Deterministic Wavefronts

3.6 Partial Phase Conjugation

3.7 Modeling

Design Exercise: AO System Requirements Development

3.8 Questions and Problems

References

Chapter 4 Adaptive Optics Applications and Systems

4.1 Imaging Systems

4.1.1 Astronomical imaging systems

4.1.1.1 Single conjugate adaptive optics

4.1.1.2 Multiconjugate adaptive optics

4.1.1.3 Extending the field-of-view with discrete layer-oriented atmospheric correction

4.1.1.4 Extending the field-of-view with continuous distribution (tomographic) atmospheric correction

4.1.1.5 Extreme Adaptive Optics for Extrasolar Planet Imaging

4.1.1.6 Coronagraphs

4.1.1.7 Solar Adaptive Optics

4.1.1.8 Comparison of Astronomical Imaging Systems

4.1.2 Biomedical and retinal imaging

4.1.2.1 Conventional adaptive optics

4.1.2.2 Optical coherence tomography

4.1.2.2.1 Time-domain OCT

4.1.2.2.2 Frequency domain OCT

4.1.2.3 Scanning laser ophthalmology

4.1.2.4 SLO combined with OCT

4.1.3 Microscopy

4.1.4 Metrology

4.1.5 Autonomy and Artificial Intelligence

4.2 Beam Propagation Systems

4.2.1 Target loop systems

4.2.2 Local loop beam cleanup systems

4.2.3 Common Path Common Mode Systems

4.2.4 Beam Combining

4.2.5 Alternative concepts

4.2.6 Pros and cons of the various approaches

4.2.7 Free-space laser communications systems

4.2.7.1 Fading and transmission loss

4.2.7.2 Bit Error Rates

4.2.7.3 Quantum Networking

4.2.7.4 Beamforming for Optical Vortices or Orbital Angular Momentum

4.2.7.5 Optical Time/Frequency Transfer

4.2.8 Horizontal path imaging systems

4.3 Manufacturing

4.4 Unconventional Adaptive Optics

4.4.1 Nonlinear optics

4.4.2 Elastic photon scattering, DFWM

4.4.3 Inelastic photon scattering (Raman and Brillouin scattering)

4.5 System Engineering

4.5.1 System Performance Requirements:

4.5.2 Compensated Beam Properties:

4.5.3 Wavefront Reference Beam Properties:

4.5.4 Optical System Integration:

4.5.5 System Modeling

4.6 Questions and Problems

References

Chapter 5 Wavefront Sensing: Optical and Mechanical Aspects

5.1 Directly Measuring Phase

5.1.1 The non-uniqueness of the diffraction pattern

5.1.2 Determining phase information from intensity

5.1.3 Modal and zonal sensing

5.1.4 Dynamic range of tilt and wavefront measurement

5.2 Direct Wavefront Sensing - Modal

5.2.1 Importance of wavefront tilt

5.2.2 Measurement of tilt

5.2.3 Focus sensing

5.2.4 Modal sensing of higher-order aberrations

5.3 Direct Wavefront Sensing - Zonal

5.3.1 Interferometric wavefront sensing

5.3.1.1 Methods of interference

5.3.1.2 Self-referencing interferometers

5.3.1.3 The principle of the shearing interferometer

5.3.1.4 Practical operation of shearing interferometer

5.3.1.5 Lateral shearing interferometers

5.3.1.6 Rotation and radial shear interferometers

5.3.1.7 Phase shifting interferometers

5.3.2 Shack-Hartmann wavefront sensors

5.3.3 Holographic Wavefront Sensor

5.3.4 Curvature sensing

5.3.5 Pyramid wavefront sensor

5.3.6 Other Approaches

5.3.6.1 Plenoptic Wavefront Sensor

5.3.6.3 Reverse Hartmann WFS

5.3.7 Selecting a method

5.4 Indirect Wavefront Sensing Methods

5.4.1 Multidither adaptive optics

5.4.2 Image sharpening

5.4.3 Full field sensing

5.5 Optical Spatial Filtering

5.6 Wavefront Sampling

5.6.1 Beamsplitters

5.6.2 Hole gratings

5.6.3 Temporal duplexing

5.6.4 Reflective wedges

5.6.5 Diffraction gratings

5.6.6 Hybrids

5.6.7 Sensitivities of sampler concepts

5…

Titel
Principles of Adaptive Optics
EAN
9781000531343
Format
E-Book (pdf)
Veröffentlichung
27.02.2022
Digitaler Kopierschutz
Adobe-DRM
Anzahl Seiten
356