The aim of this book is to give an introduction to adic spaces and to develop systematically their étale cohomology. First general properties of the étale topos of an adic space are studied, in particular the points and the constructible sheaves of this topos. After this the basic results on the étale cohomology of adic spaces are proved: base change theorems, finiteness, Poincaré duality, comparison theorems with the algebraic case.
Autorentext
Prof. Dr. Roland Huber is Professor of Mathematics at the Department of Mathematics and Informatics in the School of Mathematics and Natural Sciences of the University of Wuppertal, Germany.
Klappentext
Diese Forschungsmonographie von hohem mathematischen Niveau liefert einen neuen Zugang zu den rigid-analytischen Räumen, sowie ihrer etalen Kohomologie.USP: Aus der Froschung: Zahlentheorie und Algebraische Geometrie
Inhalt
Summary of the results on the étale cohomology of rigid analytic varieties - Adic spaces - The étale site of a rigid analytic variety and an adic space - Comparison theorems - Base change theorems - Cohomology with compact support - Finiteness - Poincaré Duality - Partially proper sites of rigid analytic varieties and analytic adic spaces