A New Approach to Sound Statistical ReasoningInferential Models: Reasoning with Uncertainty introduces the authors' recently developed approach to inference: the inferential model (IM) framework. This logical framework for exact probabilistic inference does not require the user to input prior information. The authors show how an IM produces meaning



Autorentext

Ryan Martin is an associate professor in the Department of Mathematics, Statistics, and Computer Science at the University of Illinois at Chicago.

Chuanhai Liu is a professor in the Department of Statistics at Purdue University.



Inhalt

Preliminaries. Prior-Free Probabilistic Inference. Two Fundamental Principles. Inferential Models. Predictive Random Sets. Conditional Inferential Models. Marginal Inferential Models. Normal Linear Models. Prediction of Future Observations. Simultaneous Inference on Multiple Assertions. Generalized Inferential Models. Future Research Topics. Bibliography. Index.

Titel
Inferential Models
Untertitel
Reasoning with Uncertainty
EAN
9781439886519
ISBN
978-1-4398-8651-9
Format
E-Book (pdf)
Herausgeber
Veröffentlichung
25.09.2015
Digitaler Kopierschutz
Adobe-DRM
Dateigrösse
8.9 MB
Anzahl Seiten
276
Jahr
2015
Untertitel
Englisch