This book presents novel classification algorithms for four challenging prediction tasks, namely learning from imbalanced, semi-supervised, multi-instance and multi-label data. The methods are based on fuzzy rough set theory, a mathematical framework used to model uncertainty in data. The book makes two main contributions: helping readers gain a deeper understanding of the underlying mathematical theory; and developing new, intuitive and well-performing classification approaches. The authors bridge the gap between the theoretical proposals of the mathematical model and important challenges in machine learning.
Inhalt
Introduction.- Classi cation.- Understanding OWA based fuzzy rough sets.- Fuzzy rough set based classi cation of semi-supervised data.- Multi-instance learning.- Multi-label learning.- Conclusions and future work.- Bibliography.
Titel
Dealing with Imbalanced and Weakly Labelled Data in Machine Learning using Fuzzy and Rough Set Methods
Autor
EAN
9783030046637
Format
E-Book (pdf)
Hersteller
Genre
Veröffentlichung
23.11.2018
Digitaler Kopierschutz
Wasserzeichen
Dateigrösse
4.63 MB
Anzahl Seiten
249
Unerwartete Verzögerung
Ups, ein Fehler ist aufgetreten. Bitte versuchen Sie es später noch einmal.