Das vorliegende Buch ist ein umfassendes grundlegendes Kompendium über Dehnungsmessstreifen (DMS) und ihre Anwendung in der Materialwissenschaft und Werkstofftechnik sowie in allen Bereichen des Ingenieurwesens. Es deckt sowohl die theoretischen als auch die praktischen Aspekte der Spannungsanalyse mithilfe von Dehnungsmessstreifen ab. Ein historischer Rückblick auf die Erfindung und Entwicklung von DMS fasst das "Wer, Wann und Wie" zusammen. Die umfassende Bibliographie führt zu zusätzlichen Hintergrundinformationen.
Besonderes Augenmerk gilt der Spannungsanalyse zur Bestimmung der mechanischen Eigenschaften, der Tragfähigkeit und der Gebrauchstauglichkeit von Bauteilen sowie zur Planung von Monitoring und Inspektionen. Die richtige Planung und Auswertung von Messungen und die Algorithmen zur Ermittlung von Spannungen werden aufgezeigt und die Interpretation von Ergebnissen erläutert. Dabei schöpft der Autor für die praxisorientierten Beschreibungen der Messprinzipien, der Messanordnungen und der Versuchsreihen aus seinem reichen Erfahrungsschatz.
Das Buch enthält eine Anzahl realer Anwendungsbeispiele mit detaillierten Anleitungen, die als Vorbilder für die Lösung ähnlicher Aufgaben betrachtet werden können. Kommentare helfen, typische Fehler und Fehlversuche zu vermeiden.
Das Buch ist ein unverzichtbares Nachschlagewerk für Fachleute, die Bauteile analysieren und Messungen planen müssen, die zu zuverlässigen Ergebnissen führen.
Das Buch ist lehrreich für Praktiker, die zuverlässige Messkreise installieren und die Ergebnisse beurteilen müssen.
Das Buch empfiehlt sich auch für Anfänger, um sich mit den Problemen vertraut zu machen und die Möglichkeiten und Grenzen der Dehnungsmesstechnik kennen zu lernen.
Autorentext
Prof. Dr.-Ing. Stefan Keil played an authoritative part in the development of modern experimental strain analysis. Stefan Keil was born in 1937. He studied mechanical engineering at RWTH Aachen, Germany. After graduation he researched on strength of materials and leaded fatigue tests on structural components of aircrafts with Hamburger Flugzeugbau GmbH. He then returned to the RWTH Aachen Institute of Material Science as assistant professor where he was active in research on material behavior under service loads. He dealt with strength calculations and methods of stress analysis using strain gages, i.e. in the elastoplastic deformation range. He received his doctorate in 1970 and was honored with the Borchers Award. From 1971 to 1996 he was employed with Hottinger Baldwin Messtechnik where he spezialized in the technique and application of strain gages. Here he was responsible for research projects dealing with the experimental assessment of load-bearing capacity and safety of structures. From 1996 to 1999 Stefan Keil has worked with the Institute of Experimental Statics in Bremen. In 1997 he was appointed associate lecturer and honorary professor in 2003 at the Technical University of Clausthal. For more than 20 years he was the editor of the journal ?Messtechnische Briefe? and in 1985 he founded the journal ?Reports in Applied Measurement? RAM. He is member of the GESA executive board and in 2010 he was awarded the VDI honorary plaque. He has authored and co-authored more than 60 journal papers, a large number of conference papers, and has been a working member of several technical committees and working groups. Stefan Keil is a sought-after expert advisor in the field of experimental mechanics.
Zusammenfassung
This book is a profound compendium on strain gages and their application in materials science and all fields of engineering. It covers both the theoretical and practical aspects of strength and stress analysis using the technique of strain gages. A brief historical review about strain gage inventions is looking at the "who, when and how". The comprehensive bibliography leads to additional background information.
Particular consideration is given to the stress analysis in order to verify the mechanical properties and capacity of components with focus on stability and serviceability, optimization, and safety checks, as well as in order to foresee inspection and monitoring. The practice-oriented descriptions of the principles of the measurement, installation and experimental set-ups derives from the author`s own experiences in the field. Particular emphasis is laid on the correct planning and assessment of measurements, and on the interpretation of the results. Step-by-step guidance is given for many application examples, and comments help to avoid typical mistakes.
The book is an indispensable reference work for experts who need to analyze structures and have to plan measurements which lead to reliable results. The book is instructive for practitioners who must install reliable measurement circuits and judge the results. The book is also recommended for beginners to get familiar with the problems and to learn about the possibilities and the limits of the strain gage technique.
Inhalt
1 Historical Review
2 Fundamentals of strain gage technology
2.1 Measurement principle and structure
2.2 Sensitivity
2.3 Transverse sensitivity
2.4 Temperature effect
2.5 Mechanics of the strain gage
2.6 Influence of pressure
2.7 Dynamic behavior
2.8 Heat dissipation
2.9 Measuring at elevated temperatures
2.10 Stress gages
3 Installation of strain gages
3.1 Preparatory work
3.2 Methods of fastening
3.3 Remarks on some measurement object materials (Glas, enamel, glaced porcelain, Concrete, Wood, Plastics)
3.4 Measurement point protection
3.5 Quality tests of the strain gage installation
4 The Wheatstone bridge circuit
4.1 Circuit principle
4.2 Basic equation of the bridge circuit
4.3 Temperature compensation
4.4 Limit of the bridge signal resolution
4.5 Examples of some elementary bridge circuits
5 Adjustment and compensation circuits
5.1 General
5.2 Compensation of zero shift with temperature change and zero adjustment
5.3 Compensation of temperature effects on the sensitivity and linearization measures
5.4 Adjustment of the characteristic value
5.5 Creep compensation
5.6 Full bridge circuits connected in parallel
6 Cable between strain gage bridge circuit and measuring instrument
6.1 Basics
6.2 Ohmic resistance of the cable
6.3 Influence of cable capacitance
6.4 Full-bridge connection in four-wire technology
6.5 Six-wire circuit
6.6 Dual channel principle
6.7 Connection of half and quarter bridges
6.8 Protection against disturbing influences
7 Signal processing
7.1 Introductory viewing
7.2 Analog instrumentation amplifier
7.3 Digital amplifier concepts
7.4 Compensation method
7.5 Multi-point Measurement
8 Calibration devices for measurements with strain gages
8.1 Introduction
8.2 Measurement chain
8.3 Characteristic and sensitivity
8.4 Calibration of the entire measuring chain as a measuring device
8.5 Compensators
8.6 Transducers
8.7 Calibration measures
8.8 Calibration of measuring arrangements with self-installed strain gages
9 Determination of mechanical stresses from strains measured with strain gages
9.1 Introduction
9.2 Terms of stress and strain
9.3 Elastic deformation and stress of a tensile rod under uniaxial tensile loading
9.4 The biaxial stress state
9.5 Mohr?s Circle
9.6 Deformation circle
9.7 Types of rosettes and grid notation
9.8 Evaluation formulas for 0?/45?/90? strain-gage rosettes
9.9 Evaluation formulas for 0?/60?/120? strain-gage rosettes
10 Application examples of elastic deformation
10.1 Initial considerations
10.2 Principal directions are known
10.3 Stress analysis for unknown principal directions
10.4 Simultaneous measurement of multiple load components
…