From the reviews: "[...] An excellent textbook in the theory of linear operators in Banach and Hilbert spaces. It is a thoroughly worthwhile reference work both for graduate students in functional analysis as well as for researchers in perturbation, spectral, and scattering theory. [...] I can recommend it for any mathematician or physicist interested in this field." Zentralblatt MATH



Autorentext

Biography of Tosio Kato

Tosio Kato was born in 1917 in a village to the north of Tokyo. He studied theoretical physics at the Imperial University of Tokyo. After several years of inactivity during World War II due to poor health, he joined the Faculty of Science at the University of Tokyo in 1951. From 1962 he was Professor of Mathematics at the University of California, Berkeley, where he is now Professor Emeritus.

Kato was a pioneer in modern mathematical physics. He worked in te areas of operator theory, quantum mechanics, hydrodynamics, and partial differential equations, both linear and nonlinear.



Inhalt

One Operator theory in finite-dimensional vector spaces.- § 1. Vector spaces and normed vector spaces.- 1. Basic notions.- 2. Bases.- 3. Linear manifolds.- 4. Convergence and norms.- 5. Topological notions in a normed space.- 6. Infinite series of vectors.- 7. Vector-valued functions.- § 2. Linear forms and the adjoint space.- 1. Linear forms.- 2. The adjoint space.- 3. The adjoint basis.- 4. The adjoint space of a normed space.- 5. The convexity of balls.- 6. The second adjoint space.- § 3. Linear operators.- 1. Definitions. Matrix representations.- 2. Linear operations on operators.- 3. The algebra of linear operators.- 4. Projections. Nilpotents.- 5. Invariance. Decomposition.- 6. The adjoint operator.- § 4. Analysis with operators.- 1. Convergence and norms for operators.- 2. The norm of Tn.- 3. Examples of norms.- 4. Infinite series of operators.- 5. Operator-valued functions.- 6. Pairs of projections.- § 5. The eigenvalue problem.- 1. Definitions.- 2. The resolvent.- 3. Singularities of the resolvent.- 4. The canonical form of an operator.- 5. The adjoint problem.- 6. Functions of an operator.- 7. Similarity transformations.- § 6. Operators in unitary spaces.- 1. Unitary spaces.- 2. The adjoint space.- 3. Orthonormal families.- 4. Linear operators.- 5. Symmetric forms and symmetric operators.- 6. Unitary, isometric and normal operators.- 7. Projections.- 8. Pairs of projections.- 9. The eigenvalue problem.- 10. The minimax principle.- Two Perturbation theory in a finite-dimensional space.- § 1. Analytic perturbation of eigenvalues.- 1. The problem.- 2. Singularities of the eigenvalues.- 3. Perturbation of the resolvent.- 4. Perturbation of the eigenprojections.- 5. Singularities of the eigenprojections.- 6. Remarks and examples.- 7. The case of T(x) linear in x.- 8. Summary.- § 2. Perturbation series.- 1. The total projection for the ?-group.- 2. The weighted mean of eigenvalues.- 3. The reduction process.- 4. Formulas for higher approximations.- 5. A theorem of Motzkin-Taussky.- 6. The ranks of the coefficients of the perturbation series.- § 3. Convergence radii and error estimates.- 1. Simple estimates.- 2. The method of majorizing series.- 3. Estimates on eigenvectors.- 4. Further error estimates.- 5. The special case of a normal unperturbed operator.- 6. The enumerative method.- § . Similarity transformations of the eigenspaces and eigenvectors.- 1. Eigenvectors.- 2. Transformation functions.- 3. Solution of the differential equation.- 4. The transformation function and the reduction process.- 5. Simultaneous transformation for several projections.- 6. Diagonalization of a holomorphic matrix function.- § 5. Non-analytic perturbations.- 1. Continuity of the eigenvalues and the total projection.- 2. The numbering of the eigenvalues.- 3. Continuity of the eigenspaces and eigenvectors.- 4. Differentiability at a point.- 5. Differentiability in an interval.- 6. Asymptotic expansion of the eigenvalues and eigenvectors.- 7. Operators depending on several parameters.- 8. The eigenvalues as functions of the operator.- § 6. Perturbation of symmetric operators.- 1. Analytic perturbation of symmetric operators.- 2. Orthonormal families of eigenvectors.- 3. Continuity and differentiability.- 4. The eigenvalues as functions of the symmetric operator.- 5. Applications. A theorem of Lidskii.- Three Introduction to the theory of operators in Banach spaces.- § 1. Banach spaces.- 1. Normed spaces.- 2. Banach spaces.- 3. Linear forms.- 4. The adjoint space.- 5. The principle of uniform boundedness.- 6. Weak convergence.- 7. Weak* convergence.- 8. The quotient space.- § 2. Linear operators in Banach spaces.- 1. Linear operators. The domain and range.- 2. Continuity and boundedness.- 3. Ordinary differential operators of second order.- § 3. Bounded operators.- 1. The space of bounded operators.- 2. The operator algebra ?(X).- 3. The adjoint operator.- 4. Projections.- § 4. Compact operators.- 1. Definition.- 2. The space of compact operators.- 3. Degenerate operators. The trace and determinant.- § 5. Closed operators.- 1. Remarks on unbounded operators.- 2. Closed operators.- 3. Closable operators.- 4. The closed graph theorem.- 5. The adjoint operator.- 6. Commutativity and decomposition.- § 6. Resolvents and spectra.- 1. Definitions.- 2. The spectra of bounded operators.- 3. The point at infinity.- 4. Separation of the spectrum.- 5. Isolated eigenvalues.- 6. The resolvent of the adjoint.- 7. The spectra of compact operators.- 8. Operators with compact resolvent.- Four Stability theorems.- §1. Stability of closedness and bounded invertibility.- 1. Stability of closedness under relatively bounded perturbation.- 2. Examples of relative boundedness.- 3. Relative compactness and a stability theorem.- 4. Stability of bounded in vertibility.- § 2. Generalized convergence of closed operators.- 1. The gap between subspaces.- 2. The gap and the dimension.- 3. Duality.- 4. The gap between closed operators.- 5. Further results on the stability of bounded in vertibility.- 6. Generalized convergence.- § 3. Perturbation of the spectrum.- 1. Upper semicontinuity of the spectrum.- 2. Lower semi-discontinuity of the spectrum.- 3. Continuity and analyticity of the resolvent.- 4. Semicontinuity of separated parts of the spectrum.- 5. Continuity of a finite system of eigenvalues.- 6. Change of the spectrum under relatively bounded perturbation.- 7. Simultaneous consideration of an infinite number of eigenvalues.- 8. An application to Banach algebras. Wiener's theorem.- § 4. Pairs of closed linear manifolds.- 1. Definitions.- 2. Duality.- 3. Regular pairs of closed linear manifolds.- 4. The approximate nullity and deficiency.- 5. Stability theorems.- § 5. Stability theorems for semi-Fredholm operators.- 1. The nullity, deficiency and index of an operator.- 2. The general stability theorem.- 3. Other stability theorems.- 4. Isolated eigenvalues.- 5. Another form of the stability theorem.- 6. Structure of the spectrum of a closed operator.- § 6. Degenerate perturbations.- 1. The Weinstein-Aronszajn determinants.- 2. The W-A formulas.- 3. Proof of the W-A formulas.- 4. Conditions excluding the singular case.- Five Operators in Hilbert spaces.- § 1. Hilbert space.- 1. Basic notions.- 2. Complete orthonormal families.- § 2. Bounded operators in Hilbert spaces.- 1. Bounded operators and their adjoints.- 2. Unitary and isometric operators.- 3. Compact operators.- 4. The Schmidt class.- 5. Perturbation of orthonormal families.- § 3. Unbounded operators in Hilbert spaces.- 1. General remarks.- 2. The numerical range.- 3. Symmetric operators.- 4. The spectra of symmetric operators.- 5. The resolvents and spectra of selfadjoint operators.- 6. Second-order ordinary differential operators.- 7. The operators T*T.- 8. Normal operators.- 9. Reduction of symmetric operators.- 10. Semibounded and accretive operato…

Titel
Perturbation Theory for Linear Operators
EAN
9783642662829
Format
E-Book (pdf)
Veröffentlichung
06.12.2012
Digitaler Kopierschutz
Wasserzeichen
Anzahl Seiten
623