This book addresses a broad range of topics on antennas for space applications. First, it introduces the fundamental methodologies of space antenna design, modelling and analysis as well as the state-of-the-art and anticipated future technological developments. Each of the topics discussed are specialized and contextualized to the space sector. Furthermore, case studies are also provided to demonstrate the design and implementation of antennas in actual applications. Second, the authors present a detailed review of antenna designs for some popular applications such as satellite communications, space-borne synthetic aperture radar (SAR), Global Navigation Satellite Systems (GNSS) receivers, science instruments, radio astronomy, small satellites, and deep-space applications. Finally it presents the reader with a comprehensive path from space antenna development basics to specific individual applications.
Key Features:
- Presents a detailed review of antenna designs for applications such as satellite communications, space-borne SAR, GNSS receivers, science instruments, small satellites, radio astronomy, deep-space applications
- Addresses the space antenna development from different angles, including electromagnetic, thermal and mechanical design strategies required for space qualification
- Includes numerous case studies to demonstrate how to design and implement antennas in practical scenarios
- Offers both an introduction for students in the field and an in-depth reference for antenna engineers who develop space antennas
This book serves as an excellent reference for researchers, professionals and graduate students in the fields of antennas and propagation, electromagnetics, RF/microwave/millimetrewave systems, satellite communications, radars, satellite remote sensing, satellite navigation and spacecraft system engineering, It also aids engineers technical managers and professionals working on antenna and RF designs. Marketing and business people in satellites, wireless, and electronics area who want to acquire a basic understanding of the technology will also find this book of interest.
Autorentext
Editors
William A. Imbriale, Jet Propulsion Laboratory, California Institute of Technology, USA
Steven (Shichang) Gao, Surrey Space Centre, UK
Luigi Boccia, University of Calabria, Italy
Inhalt
Preface xvii
Acknowledgments xix
Acronyms xxi
Contributors xxv
1 Antenna Basics 1
Luigi Boccia and Olav Breinbjerg
1.1 Introduction 1
1.2 Antenna Performance Parameters 2
1.2.1 Reflection Coefficient and Voltage Standing Wave Ratio 2
1.2.2 Antenna Impedance 3
1.2.3 Radiation Pattern and Coverage 4
1.2.4 Polarization 6
1.2.5 Directivity 7
1.2.6 Gain and Realized Gain 8
1.2.7 Equivalent Isotropically Radiated Power 8
1.2.8 Effective Area 9
1.2.9 Phase Center 9
1.2.10 Bandwidth 9
1.2.11 Antenna Noise Temperature 9
1.3 Basic Antenna Elements 10
1.3.1 Wire Antennas 10
1.3.2 Horn Antennas 10
1.3.3 Reflectors 15
1.3.4 Helical Antennas 17
1.3.5 Printed Antennas 19
1.4 Arrays 26
1.4.1 Array Configurations 28
1.5 Basic Effects of Antennas in the Space Environment 30
1.5.1 Multipaction 30
1.5.2 Passive Inter-modulation 31
1.5.3 Outgassing 31
References 32
2 Space Antenna Modeling 36
Jian Feng Zhang, Xue Wei Ping, Wen Ming Yu, Xiao Yang Zhou, and Tie Jun Cui
2.1 Introduction 36
2.1.1 Maxwell's Equations 37
2.1.2 CEM 37
2.2 Methods of Antenna Modeling 39
2.2.1 Basic Theory 39
2.2.2 Method of Moments 40
2.2.3 FEM 45
2.2.4 FDTD Method 49
2.3 Fast Algorithms for Large Space Antenna Modeling 54
2.3.1 Introduction 54
2.3.2 MLFMA 54
2.3.3 Hierarchical Basis for the FEM 62
2.4 Case Studies: Effects of the Satellite Body on the Radiation Patterns of Antennas 68
2.5 Summary 73
Acknowledgments 73
References 73
3 System Architectures of Satellite Communication, Radar, Navigation and Remote Sensing 76
Michael A. Thorburn
3.1 Introduction 76
3.2 Elements of Satellite System Architecture 76
3.3 Satellite Missions 77
3.4 Communications Satellites 77
3.4.1 Fixed Satellite Services 77
3.4.2 Broadcast Satellite Services (Direct Broadcast Services) 78
3.4.3 Digital Audio Radio Services 78
3.4.4 Direct to Home Broadband Services 78
3.4.5 Mobile Communications Services 78
3.5 Radar Satellites 79
3.6 Navigational Satellites 79
3.7 Remote Sensing Satellites 80
3.8 Architecture of Satellite Command and Control 80
3.9 The Communications Payload Transponder 80
3.9.1 Bent-Pipe Transponders 81
3.9.2 Digital Transponders 81
3.9.3 Regenerative Repeater 81
3.10 Satellite Functional Requirements 81
3.10.1 Key Performance Concepts: Coverage, Frequency Allocations 82
3.10.2 Architecture of the Communications Payload 82
3.10.3 Satellite Communications System Performance Requirements 83
3.11 The Satellite Link Equation 83
3.12 The Microwave Transmitter Block 84
3.12.1 Intercept Point 85
3.12.2 Output Backoff 86
3.12.3 The Transmit Antenna and EIRP 87
3.13 Rx Front-End Block 88
3.13.1 Noise Figure and Noise Temperature 88
3.14 Received Power in the Communications System's RF Link 90
3.14.1 The Angular Dependencies of the Uplink and Downlink 91
3.15 Additional Losses in the Satellite and Antenna 91
3.15.1 Additional Losses due to Propagation Effects and the Atmosphere 91
3.15.2 Ionospheric Effects - Scintillation and Polarization Rotation 93
3.16 Thermal Noise and the Antenna Noise Temperature 93
3.16.1 The Interface between the Antenna and the Communications System 93
3.16.2 The Uplink Signal to Noise 94
3.17 The SNR Equation and Minimum Detectable Signal 94
3.18 Power Flux Density, Saturation Flux Density and Dynamic Range 95
3.18.1 Important Relationship between PFD and Gain State of the Satellite Transponder 95
3.19 Full-Duplex Operation and Passive Intermodulation 96
3.20 Gain and Gain Variation 96
3.21 Pointing Error 97
3.22 Remaining Elements of Satellite System Architecture 98
3.23 Orbits and Orbital Considerations 98
3.24 Spacecraft Introduction 100
3.25 Spacecraft Budgets (Mass, Power, Thermal) 101
3.25.1 Satellite Mass 101
3.25.2 Satellite Power 101
3.25.3 Satellite Thermal Dissipation 101
3.26 Orbital Mission Life and Launch Vehicle Considerations 102
3.27 Environment Management (Thermal, Radiation) 102
3.28 Spacecraft Structure (Acoustic/Dynamic) 103
3.29 Satellite Positioning (Station Keeping) 103
3.30 Satellite Positioning (Attitude Control) 104
3.31 Power Subsystem 104
3.32 Tracking, Telemetry, Command and Monitoring 105
References 105
4 Space Environment and Materials 106
J. Santiago-Prowald and L. Salghetti Drioli
4.1 Introduction 106
4.2 The Space Environment of Antennas 106
4.2.1 The Radiation Environment 107
4.2.2 The Plasma Environment 109
4.2.3 The Neutral Environment 110
4.2.4 Space Environment for Typical Spacecraft Orbits 111
4.2.5 Thermal Environment 111
4.2.6 Launch Environment 113
4.3 Selection of Materials in Relation to Their Electromagnetic Properties 117
4.3.1 RF Transparent Materials and Their Use 117
…