Provides practical examples of circuit design and analysis using PSpice, MATLAB, and the Smith Chart
This book presents the three technologies used to deal with electronic circuits: MATLAB, PSpice, and Smith chart. It gives students, researchers, and practicing engineers the necessary design and modelling tools for validating electronic design concepts involving bipolar junction transistors (BJTs), field-effect transistors (FET), OP Amp circuits, and analog filters.
Electronic Circuits with MATLAB®, PSpice®, and Smith Chart presents analytical solutions with the results of MATLAB analysis and PSpice simulation. This gives the reader information about the state of the art and confidence in the legitimacy of the solution, as long as the solutions obtained by using the two software tools agree with each other. For representative examples of impedance matching and filter design, the solution using MATLAB and Smith chart (Smith V4.1) are presented for comparison and crosscheck. This approach is expected to give the reader confidence in, and a deeper understanding of, the solution. In addition, this text:
* Increases the reader's understanding of the underlying processes and related equations for the design and analysis of circuits
* Provides a stepping stone to RF (radio frequency) circuit design by demonstrating how MATLAB can be used for the design and implementation of microstrip filters
* Features two chapters dedicated to the application of Smith charts and two-port network theory
Electronic Circuits with MATLAB®, PSpice®, and Smith Chart will be of great benefit to practicing engineers and graduate students interested in circuit theory and RF circuits.
Autorentext
Won Y. Yang, PhD, is an Emeritus Professor in the Department of Electrical Engineering at Chung-Ang University in Seoul, Korea.
Jaekwon Kim, PhD, is a Professor in the Department of Computer & Telecommunications Engineering at Yonsei University in Wonju, Korea.
Kyung W. Park, PhD, is a Managerial Researcher at Korea Electronics Technology Institute, Seoul, Korea.
Donghyun Baek, PHD, is a Professor in the Department of Electrical Engineering at Chung-Ang University in Seoul, Korea.
Sungjoon Lim, PhD, is a Professor in the Department of Electrical Engineering at Chung-Ang University in Seoul, Korea.
Jingon Joung, PhD, is a Professor in the Department of Electrical Engineering at Chung-Ang University in Seoul, Korea.
Suhyun Park, PhD, is a Professor in the Department of Electrical Engineering at Chung-Ang University in Seoul, Korea.
Han L. Lee, PhD, is a Professor in the Department of Electrical Engineering at Chung-Ang University in Seoul, Korea.
Woo June Choi, PhD, is a Professor in the Department of Electrical Engineering at Chung-Ang University in Seoul, Korea.
Taeho Im, PhD, is a Professor in Oceanic IT Engineering at Hoseo University in Asan, Korea.
Inhalt
Preface xiii
About the Companion Website xv
1 Load Line Analysis and Fourier Series 1
1.1 Load Line Analysis 1
1.1.1 Load Line Analysis of a Nonlinear Resistor Circuit 3
1.1.2 Load Line Analysis of a Nonlinear RL circuit 7
1.2 Voltage-Current Source Transformation 10
1.3 Thevenin/Norton Equivalent Circuits 11
1.4 Miller's Theorem 18
1.5 Fourier Series 18
1.5.1 Computation of Fourier Coefficients Using Symmetry 20
1.5.2 Circuit Analysis Using Fourier Series 29
1.5.3 RMS Value and Distortion Factor of a Non-Sinusoidal Periodic Signal 35
Problems 36
2 Diode Circuits 43
2.1 The v-i Characteristic of Diodes 43
2.1.1 Large-Signal Diode Model for Switching Operations 44
2.1.2 Small-Signal Diode Model for Amplifying Operations 44
2.2 Analysis/Simulation of Diode Circuits 46
2.2.1 Examples of Diode Circuits 46
2.2.2 Clipper/Clamper Circuits 51
2.2.3 Half-wave Rectifier 53
2.2.4 Half-wave Rectifier with Capacitor Peak Rectifier 53
2.2.5 Full-wave Rectifier 57
2.2.6 Full-wave Rectifier with LC Filter 59
2.2.7 Precision Rectifiers 62
2.2.7.1 Improved Precision Half-wave Rectifier 63
2.2.7.2 Precision Full-wave Rectifier 65
2.2.8 Small-Signal (AC) Analysis of Diode Circuits 67
2.3 Zender Diodes 75
Problems 85
3 BJT Circuits 105
3.1 BJT (Bipolar Junction Transistor) 106
3.1.1 Ebers-Moll Representation of BJT 106
3.1.2 Operation Modes (Regions) of BJT 109
3.1.3 Parameters of BJT 109
3.1.4 Common-Base Configuration 111
3.1.5 Common-Emitter Configuration 113
3.1.6 Large-Signal (DC) Model of BJT 115
3.1.7 Small-Signal (AC) Model of BJT 142
3.1.8 Analysis of BJT Circuits 143
3.1.9 BJT Current Mirror 156
3.1.10 BJT Inverter/Switch 161
3.1.11 Emitter-Coupled Differential Pair 165
3.2 BJT Amplifier Circuits 168
3.2.1 Common-Emitter (CE) Amplifier 169
3.2.2 Common-Collector (CC) Amplifier (Emitter Follower) 173
3.2.3 Common-Base (CB) Amplifier 180
3.2.4 Multistage Cascaded BJT Amplifier 187
3.2.5 Composite/Compound Multi-Stage BJT Amplifier 199
3.3 Logic Gates Using Diodes/Transistors[C-3, M-1] 209
3.3.1 DTL NAND Gate 209
3.3.2 TTL NAND Gate 215
3.3.2.1 Basic TTL NAND Gate Using Two BJTs 215
3.3.2.2 TTL NAND Gate Using Three BJTs 218
3.3.2.3 Totem-Pole Output Stage 222
3.3.2.4 Open-Collector Output and Tristate Output 227
3.3.3 ECL (Emitter-Coupled Logic) OR/NOR Gate 229
3.4 Design of BJT Amplifier 239
3.4.1 Design of CE Amplifier with Specified Voltage Gain 232
3.4.2 Design of CC Amplifier (Emitter Follower) with Specified Input Resistance 239
3.5 BJT Amplifier Frequency Response 243
3.5.1 CE Amplifier 243
3.5.2 CC Amplifier (Emitter Follower) 248
3.5.3 CB Amplifier 255
3.6 BJT Inverter Time Response 259
Problems 266
4 FET Circuits 303
4.1 Field-Effect Transistor (FET) 303
4.1.1 JFET (Junction FET) 304
4.1.2 MOSFET (Metal-Oxide-Semiconductor FET) 313
4.1.3 MOSFET Used as a Resistor 327
4.1.4 FET Current Mirror 328
4.1.5 MOSFET Inverter 338
4.1.5.1 NMOS Inverter Using an Enhancement NMOS as a Load 342
4.1.5.2 NMOS Inverter Using a Depletion NMOS as a Load 347
4.1.5.3 CMOS Inverter 350
4.1.6 Source-Coupled Differential Pair 355
4.1.7 CMOS Logic Circuits 359
4.2 FET Amplifer 360
4.2.1 Common-Source (CS) Amplifier 362
4.2.2 CD Amplifier (Source Follower) 366
4.2.3 Common-Gate (CG) Amplifier 370
4.2.4 Common-Source (CS) Amplifier with FET ...