The book focuses on the topology optimization method for nano-optics. Both principles and implementing practice have been addressed, with more weight placed on applications. This is achieved by providing an in-depth study on the major topic of topology optimization of dielectric and metal structures for nano-optics with extension to the surface structures for electromagnetics. The comprehensive and systematic treatment of practical issues in topology optimization for nano-optics is one of the major features of the book, which is particularly suited for readers who are interested to learn practical solutions in topology optimization. The book can benefit researchers, engineers, and graduate students in the fields of structural optimization, nano-optics, wave optics, electromagnetics, etc.
Autorentext
Yongbo Deng is a professor at Changchun Institute of Optics Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, China. He received his Doctor Degree in Mechanical Engineering from Changchun Institute of Optics Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences (CAS). He derived a Humboldt Research Fellowship for Experienced Researchers in 2018 and was elected as the member of Youth Innovation Promotion Association of Chinese Academy of Sciences in the same year. During 2016 and 2017, he derived the Grant Fellowship of Karlsruhe Institute of Technology (KIT) in Germany as a guest professor in the Institute of Microstructure Technology. His research mainly focused on nano-optics, microfluidics, and topology optimization related topics.
Inhalt
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 Self consistency of adjoint analysis for topology optimization in
frequency domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Dielectric material based topology optimization for wave optics . . . . 4
1.3 Metal material based topology optimization for wave optics . . . . . . . 5
1.4 Topology optimization on two dimensional manifolds for wave
optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Self-consistent adjoint analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 Topology optimization problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Split of wave equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Adjoint analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.1 Optical cloak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.2 Nanostructures for localized surface plasmon resonances . . . 36
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.7.1 Adjoint analysis of topology optimization problem for two
dimensional optical waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.7.2 Adjoint analysis of topology optimization problem for
three dimensional optical waves . . . . . . . . . . . . . . . . . . . . . . . . 49
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3 Dielectric material based topology optimization for wave optics . . . . . 55
3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.1.1 Magnetic field formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.1.2 Adjoint analysis for magnetic field based topology
optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.1.3 Electric field formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1.4 Adjoint analysis for electric field based topology
optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1.5 Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.1 Cloak for perfect conductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.2 Dielectric resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.3 Beam splitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.4 Cloak for dielectric resonator . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2.5 Metalens with optical vortices . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4 Metal material based topology optimization for waves optics . . . . . . . . 103
4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.1.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...