'A welcome addition to multivariate analysis. The discussion is lucid and very leisurely, excellently illustrated with applications drawn from a wide variety of fields. A good part of the book can be understood without very specialized statistical knowledge. It is a most welcome contribution to an interesting and lively subject.' -- Nature
Originally published in 1974, this book is a reprint of a classic, still-valuable text.
"At last, after a decade of mounting interest in log-linear and related models for the analysis of discrete multivariate data, particularly in the form of multidimensional tables, we now have a comprehensive text and general reference on the subject. Even a mediocre attempt to organize the extensive and widely scattered literature on discrete multivariate analysis would be welcome; happily, this is an excellent such effort, but a group of Harvard statisticians taht has contributed much to the field. Their book ought to serve as a basic guide to the analysis of quantitative data for years to come." --James R. Beninger, Contemporary Sociology
"A welcome addition to multivariate analysis. The discussion is lucid and very leisurely, excellently illustrated with applications drawn from a wide variety of fields. A good part of the book can be understood without very specialized statistical knowledge. It is a most welcome contribution to an interesting and lively subject." --D.R. Cox, Nature
"Discrete Multivariate Analysis is an ambitious attempt to present log-linear models to a broad audience. Exposition is quite discursive, and the mathematical level, except in Chapters 12 and 14, is very elementary. To illustrate possible applications, some 60 different sets of data have been gathered together from diverse fields. To aid the reader, an index of these examples has been provided. ...the book contains a wealth of material on important topics. Its numerous examples are especially valuable." --Shelby J. Haberman, The Annals of Statistics
Zusammenfassung
6. 2 The Two-Sample Capture-Recapture Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 6. 3 Conditional Maximum Likelihood Estimation of N . . . . . . . . . . . . . . . . . . . . . . 236 6. 4 The Three-Sample Census . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 6. 5 The General Multiple Recapture Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 6. 6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 7 MODELS FOR MEASURING CHANGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 7. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 7. 2 First-Order Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 7. 3 Higher-Order Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 7. 4 Markov Models with a Single Sequence of Transitions . . . . . . . . . . . . . . . . . . 270 7. 5 Other Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 8 ANALYSIS OF SQUARE TABLES: SYMMETRY AND MARGINAL HOMOGENEITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 8. 1 Introduction . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 8. 2 Two-Dimensional Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 8. 3 Three-Dimensional Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 8. 4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 9 MODEL SELECTION AND ASSESSING CLOSENESS OF FIT: PRACTICAL ASPECTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 9. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 9. 2 Simplicity in Model Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 9. 3 Searching for Sampling Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 9. 4 Fitting and Testing Using the Same Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 9. 5 Too Good a Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 9. 6 Large Sample Sizes and Chi Square When the Null Model is False . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 9. 7 Data Anomalies and Suppressing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 9. 8 Frequency of Frequencies Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 10 OTHER METHODS FOR ESTIMATION AND TESTING IN CROSS-CLASSIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 10. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 10. 2 The Information-Theoretic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 10. 3 Minimizing Chi Square, Modi? ed Chi Square, and Logit Chi Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 10. 4 The Logistic Model and How to Use It . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 10. 5 Testing via Partitioning of Chi Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 10. 6 Exact Theory for Tests Based on Conditional Distributions . . . . . . . . . . . . . . ...
Inhalt
Structural Models For Counted Data.- Maximum Likelihood Estimates For Complete Tables.- Formal Goodness Of Fit: Summary Statistics And Model Selection.- Maximum Likelihood Estimation For Incomplete Tables.- Estimating The Size Of A Closed Population.- Models For Measuring Change.- Analysis Of Square Tables: Symmetry And Marginal Homogeneity.- Model Selection And Assessing Closeness Of Fit: Practical Aspects.- Other Methods For Estimation And Testing In Cross-Classifications.- Measures Of Association And Agreement.- Pseudo-Bayes Estimates Of Cell Probabilities.- Sampling Models For Discrete Data.- Asymptotic Methods.