Ausgehend von Beispielen aus Physik und Biologie wird die Theorie gewöhnlicher Differentialgleichungen im Hinblick auf die Theorie dynamischer Systeme entwickelt. Dabei liegt der Schwerpunkt sowohl auf mathematischer Präzision als auch auf der klaren Darstellung von Verbindungen der mathematischen Modelle zu Naturphänomenen und naturphilosophischen Ideen. So werden Resultate zur Existenz, Eindeutigkeit und stetigen Abhängigkeit bewiesen und in Verbindung mit dem Laplaceschen Dämon und dem Schmetterlingseffekt aus der Chaos-Theorie diskutiert, Überlegungen zur Stabilität mit Beispielen aus der Mechanik illustriert und Theoreme zum Langzeitverhalten von Lösungen gewöhnlicher Differentialgleichungen in ihrem Zusammenhang mit dem Maxwellschen Dämon und dem Volterra-Effekt in der Biologie dargestellt. Zu vielen der Aufgaben werden im Anhang ausführliche Musterlösungen vorgestellt.



Eine kompakte Einführung mit Beispielen aus Physik und Biologie

Autorentext

Prof. Dr. Günther J. Wirsching, Katholische Universität Eichstätt-Ingolstadt



Klappentext

Ausgehend von Beispielen aus der Physik und der Biologie wird die Theorie der gewöhnlichen Differentialgleichungen im Hinblick auf die Theorie dynamischer Systeme entwickelt. Dabei liegt der Schwerpunkt sowohl auf mathematischer Präzision als auch auf der klaren Darstellung von Verbindungen der mathematischen Modelle zu Naturphänomenen und naturphilosophischen Ideen. So werden Resultate zur Existenz, Eindeutigkeit und stetigen Abhängigkeit in Verbindung mit dem Laplaceschen Dämon und dem Schmetterlingseffekt aus der Chaos-Theorie diskutiert und Theoreme zum Langzeitverhalten von Lösungen gewöhnlicher Differentialgleichungen in ihrem Zusammenhang mit dem Maxwellschen Dämon und dem Volterra-Effekt in der Biologie dargestellt.



Inhalt
Einführung.- Der Existenzsatz von Peano.- Globale Existenz und Eindeutigkeit.- Phasenportraits und Stabilität.- Lineare Differentialgleichungen.- Autonome lineare Systeme.- Stetigkeit und Differenzierbarkeit.- Dynamische Systeme und lokale Flüsse.- Langzeitverhalten von Lösungen.- Die Liouvillesche Volumenformel.
Titel
Gewöhnliche Differentialgleichungen
Untertitel
Eine Einführung mit Beispielen, Aufgaben und Musterlösungen
EAN
9783835190443
Format
E-Book (pdf)
Veröffentlichung
26.07.2006
Digitaler Kopierschutz
Wasserzeichen
Anzahl Seiten
244
Auflage
2006
Lesemotiv